Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 151
Filter
1.
Chin J Traumatol ; 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38637177

ABSTRACT

PURPOSE: Under-foot impact loadings can cause serious lower limb injuries in many activities, such as automobile collisions and underbody explosions to military vehicles. The present study aims to compare the biomechanical responses of the mainstream vehicle occupant dummies with the human body lower limb model and analyze their robustness and applicability for assessing lower limb injury risk in under-foot impact loading environments. METHODS: The Hybrid III model, the test device for human occupant restraint (THOR) model, and a hybrid human body model with the human active lower limb model were adopted for under-foot impact analysis regarding different impact velocities and initial lower limb postures. RESULTS: The results show that the 2 dummy models have larger peak tibial axial force and higher sensitivity to the impact velocities and initial postures than the human lower limb model. In particular, the Hybrid III dummy model presented extremely larger peak tibial axial forces than the human lower limb model. In the case of minimal difference in tibial axial force, Hybrid III's tibial axial force (7.5 kN) is still 312.5% that of human active lower limb's (2.4 kN). Even with closer peak tibial axial force values, the biomechanical response curve shapes of the THOR model show significant differences from the human lower limb model. CONCLUSION: Based on the present results, the Hybrid III dummy cannot be used to evaluate the lower limb injury risk in under-foot loading environments. In contrast, potential improvement in ankle biofidelity and related soft tissues of the THOR dummy can be implemented in the future for better applicability.

2.
Dalton Trans ; 53(15): 6779-6790, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38535981

ABSTRACT

Inherently disordered structures of carbon nitrides have hindered an atomic level tunability and understanding of their catalytic reactivity. Starting from a crystalline carbon nitride, poly(triazine imide) or PTI/LiCl, the coordination of copper cations to its intralayer N-triazine groups was investigated using molten salt reactions. The reaction of PTI/LiCl within CuCl or eutectic KCl/CuCl2 molten salt mixtures at 280 to 450 °C could be used to yield three partially disordered and ordered structures, wherein the Cu cations are found to coordinate within the intralayer cavities. Local structural differences and the copper content, i.e., whether full or partial occupancy of the intralayer cavity occurs, were found to be dependent on the reaction temperature and Cu-containing salt. Crystallites of Cu-coordinated PTI were also found to electrophoretically deposit from aqueous particle suspensions onto either graphite or FTO electrodes. As a result, electrocatalytic current densities for the reduction of CO2 and H2O reached as high as ∼10 to 50 mA cm-2, and remained stable for >2 days. Selectivity for the reduction of CO2 to CO vs. H2 increases for thinner crystals as well as for when two Cu cations coordinate within the intralayer cavities of PTI. Mechanistic calculations have also revealed the electrocatalytic activity for CO2 reduction requires a smaller thermodynamic driving force with two neighboring Cu atoms per cavity as compared to a single Cu atom. These results thus establish a useful synthetic pathway to metal-coordination in a crystalline carbon nitride and show great potential for mediating stable CO2 reduction at sizable current densities.

3.
J Med Chem ; 67(5): 3860-3873, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38407934

ABSTRACT

Unfractionated heparin (UFH) and low-molecular-weight heparins (LMWHs) are widely applied for surgical procedures and extracorporeal therapies, which, however, suffer bleeding risk. Protamine, the only clinically approved antidote, can completely neutralize UFH, but only partially neutralizes LMWHs, and also has a number of safety drawbacks. Here, we show that caltrop-like multicationic small molecules can completely neutralize both UFH and LMWHs. In vitro and ex vivo assays with plasma and whole blood and in vivo assays with mice and rats support that the lead compound is not only superior to protamine by displaying higher neutralization activity and broader therapeutic windows but also biocompatible. The effective neutralization dose and the maximum tolerated dose of the lead compound are determined to be 0.4 and 25 mg/kg in mice, respectively, suggesting good promise for further preclinical studies.


Subject(s)
Heparin, Low-Molecular-Weight , Heparin , Rats , Mice , Animals , Heparin/therapeutic use , Heparin, Low-Molecular-Weight/pharmacology , Heparin, Low-Molecular-Weight/therapeutic use , Antidotes/pharmacology , Antidotes/therapeutic use , Protamines/pharmacology , Biological Assay , Anticoagulants/pharmacology , Anticoagulants/therapeutic use
4.
Sci Total Environ ; 920: 171030, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38367724

ABSTRACT

Increased surface ozone (O3) pollution seriously threatens crop production, and ethylenediurea (EDU) can alleviate crop yield reduction caused by O3. However, the reason for the decrease in grain nitrogen (N) accumulation caused by O3 and whether EDU serves as N fertilizer remain unclear. An experiment was conducted to investigate the impacts of factorial combinations of O3 enrichment (ambient air plus 60 ppb) and EDU (foliage spray with 450 ppm solutions) on N concentration, accumulation and remobilization in hybrid rice seedlings. Compared to ambient condition, elevated O3 significantly inhibited the N accumulation in vegetative organs during anthesis and grain N accumulation during the maturity stage. Elevated O3 significantly decreased the total N accumulation during anthesis and maturity stages, with a greater impact at the latter stage. The decrease in grain N accumulation caused by O3 was attributed to a decrease in N remobilization of vegetative organs during the grain filling period as well as to a decrease in post-anthesis N uptake. However, there was no significant change in the proportion of N remobilization and N uptake in grain N accumulation. The inhibitory effect of O3 on N remobilization in the upper canopy leaves was greater than that in the lower canopy leaves. In addition, elevated O3 increased the N accumulation of panicles at the anthesis stage, mainly by resulting in earlier heading of rice. EDU only increased N accumulation at the maturity stage, which was mainly attributed to an increase in rice biomass by EDU. EDU had no significant effect on N concentration, N remobilization process, and N harvest index. The findings are helpful to better understand the utilization of N fertilizer by rice under O3 pollution, and can also provide a theoretical basis for sustainable nutrient management to alleviate the negative impact of O3 on crop yield and quality.


Subject(s)
Oryza , Ozone , Edible Grain , Fertilizers , Nitrogen/pharmacology , Ozone/pharmacology
5.
Plant Cell Environ ; 47(4): 1269-1284, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38185874

ABSTRACT

Tropospheric ozone (O3 ) is a phytotoxic air pollutant adversely affecting plant growth. High O3 exposures are often concurrent with summer drought. The effects of both stresses on plants are complex, and their interactions are not yet well understood. Here, we investigate whether drought can mitigate the negative effects of O3 on plant physiology and growth based on a meta-analysis. We found that drought mitigated the negative effects of O3 on plant photosynthesis, but the modification of the O3 effect on the whole-plant biomass by drought was not significant. This is explained by a compensatory response of water-deficient plants that leads to increased metabolic costs. Relative to water control condition, reduced water treatment decreased the effects of O3 on photosynthetic traits, and leaf and root biomass in deciduous broadleaf species, while all traits in evergreen coniferous species showed no significant response. This suggested that the mitigating effects of drought on the negative impacts of O3 on the deciduous broadleaf species were more extensive than on the evergreen coniferous ones. Therefore, to avoid over- or underestimations when assessing the impact of O3 on vegetation growth, soil moisture should be considered. These results contribute to a better understanding of terrestrial ecosystem responses under global change.


Subject(s)
Ecosystem , Ozone , Droughts , Ozone/toxicity , Photosynthesis , Plant Leaves/physiology , Plants
6.
Angew Chem Int Ed Engl ; 63(8): e202315599, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38169100

ABSTRACT

Polypeptides, as natural polyelectrolytes, are assembled into tailored proteins to integrate chromophores and catalytic sites for photosynthesis. Mimicking nature to create the water-soluble nanoassemblies from synthetic polyelectrolytes and photocatalytic molecular species for artificial photosynthesis is still rare. Here, we report the enhancement of the full-spectrum solar-light-driven H2 production within a supramolecular system built by the co-assembly of anionic metalloporphyrins with cationic polyelectrolytes in water. This supramolecular photocatalytic system achieves a H2 production rate of 793 and 685 µmol h-1 g-1 over 24 h with a combination of Mg or Zn porphyrin as photosensitizers and Cu porphyrin as a catalyst, which is more than 23 times higher than that of free molecular controls. With a photosensitizer to catalyst ratio of 10000 : 1, the highest H2 production rate of >51,700 µmol h-1 g-1 with a turnover number (TON) of >1,290 per molecular catalyst was achieved over 24 h irradiation. The hierarchical self-assembly not only enhances photostability through forming ordered stackings of the metalloporphyrins but also facilitates both energy and electron transfer from antenna molecules to catalysts, and therefore promotes the photocatalysis. This study provides structural and mechanistic insights into the self-assembly enhanced photostability and catalytic performance of supramolecular photocatalytic systems.

7.
J Am Chem Soc ; 146(3): 2267-2274, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38207288

ABSTRACT

Efficient and stable photoelectrochemical reduction of CO2 into highly reduced liquid fuels remains a formidable challenge, which requires an innovative semiconductor/catalyst interface to tackle. In this study, we introduce a strategy involving the fabrication of a silicon micropillar array structure coated with a superhydrophobic fluorinated carbon layer for the photoelectrochemical conversion of CO2 into methanol. The pillars increase the electrode surface area, improve catalyst loading and adhesion without compromising light absorption, and help confine gaseous intermediates near the catalyst surface. The superhydrophobic coating passivates parasitic side reactions and further enhances local accumulation of reaction intermediates. Upon one-electron reduction of the molecular catalyst, the semiconductor-catalyst interface changes from adaptive to buried junctions, providing a sufficient thermodynamic driving force for CO2 reduction. These structures together create a unique microenvironment for effective reduction of CO2 to methanol, leading to a remarkable Faradaic efficiency reaching 20% together with a partial current density of 3.4 mA cm-2, surpassing the previous record based on planar silicon photoelectrodes by a notable factor of 17. This work demonstrates a new pathway for enhancing photoelectrocatalytic CO2 reduction through meticulous interface and microenvironment tailoring and sets a benchmark for both Faradaic efficiency and current density in solar liquid fuel production.

8.
BMC Musculoskelet Disord ; 25(1): 40, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38191314

ABSTRACT

OBJECTIVE: This study evaluated the association between admission MCV and preoperative deep vein thrombosis (DVT) in geriatric hip fractures. METHODS: Older adult patients with hip fractures were screened between January 2015 and September 2019. The demographic and clinical characteristics of the patients were collected at the largest trauma center in northwest China. MCV was measured at admission and converted into a categorical variable according to the quartile. Multivariate binary logistic regression and generalized additive model were used to identify the linear and nonlinear association between MCV and preoperative DVT. Analyses were performed using EmpowerStats and the R software. RESULTS: A total of 1840 patients who met the criteria were finally enrolled and divided into four groups according to their MCV levels. The mean MCV was 93.82 ± 6.49 (80.96 to 105.91 fL), and 587 patients (31.9%) were diagnosed with preoperative DVT. When MCV was a continuous variable, the incidence of preoperative DVT increased with mean corpuscular volume. In the fully adjusted model, admission MCV was positively correlated with the incidence of preoperative DVT (OR: 1.03; 95% CI: 1.01-1.05; P = 0.0013). After excluding the effect of other factors, each additional 1fL of MCV increased the prevalence of preoperative DVT by 1.03 times as a continuous variable. CONCLUSION: MCV was linearly associated with preoperative DVT in geriatric patients with hip fractures and could be considered a predictor of DVT risk. The MCV may contribute to risk assessment and preventing adverse outcomes in the elderly. STUDY REGISTRATION: This study is registered on the website of the Chinese Clinical Trial Registry (ChiCTR: ChiCTR2200057323).


Subject(s)
Hip Fractures , Venous Thrombosis , Aged , Humans , Erythrocyte Indices , Hip Fractures/epidemiology , Hip Fractures/surgery , Retrospective Studies , Venous Thrombosis/epidemiology
9.
J Med Chem ; 67(3): 2176-2187, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38284525

ABSTRACT

Long-acting neuromuscular blocks followed by rapid reversal may provide prolonged surgeries with improved conditions by omitting repetitive or continuous administration of the neuromuscular blocking agent (NMBA), eliminating residual neuromuscular block and minimizing postoperative recovery, which, however, is not clinically available. Here, we demonstrate that imidazolium-based macrocycles (IMCs) and acyclic cucurbit[n]urils (ACBs) can form such partners by functioning as long-acting NMBAs and rapid reversal agents through a pseudo[2]catenation mechanism based on stable complexation with Ka values of over 109 M-1. In vivo experiments with rats reveal that, at the dose of 2- and 3-fold ED90, one IMC attains a duration of action corresponding to 158 or 442 min for human adults, covering most of prolonged surgeries. The block can be reversed by one ACB with recovery time significantly shorter than that achieved by sugammadex for reversing the block of rocuronium, the clinically most widely used intermediate-acting NMBA.


Subject(s)
Catenanes , Neuromuscular Blockade , gamma-Cyclodextrins , Adult , Humans , Animals , Rats , Sugammadex/pharmacology , Rocuronium
10.
Eur Radiol ; 34(2): 1280-1291, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37589900

ABSTRACT

OBJECTIVES: To develop a CT-based radiomics model for preoperative prediction of lymph node (LN) metastasis in perihilar cholangiocarcinoma (pCCA). METHODS: The study enrolled consecutive pCCA patients from three independent Chinese medical centers. The Boruta algorithm was applied to build the radiomics signature for the primary tumor and LN. The k-means algorithm was employed to cluster the selected LNs based on the radiomics signature LN. Support vector machines were used to construct the prediction models. The diagnostic efficiency was measured by the area under the receiver operating characteristic curve (AUC). The optimal model was evaluated in terms of calibration, clinical usefulness, and prognostic value. RESULTS: A total of 214 patients were included in the study (mean age: 61.6 years ± 9.4; 130 male). The selected LNs were classified into two clusters, which were significantly correlated with LN metastasis in all cohorts (p < 0.001). The model incorporated the clinical risk factors, radiomics signature primary tumor, and the LN cluster obtained the best discrimination, with AUC values of 0.981 (95% CI: 0.962-1), 0.896 (95% CI: 0.810-0.982), and 0.865 (95% CI: 0.768-0.961) in the training, internal validation, and external validation cohorts, respectively. High-risk patients predicted by the optimal model had shorter overall survival than low-risk patients (median, 13.7 vs. 27.3 months, p < 0.001). CONCLUSIONS: The study proposed a radiomics model with good performance to predict LN metastasis in pCCA. As a noninvasive preoperative prediction tool, this model may help in patient risk stratification and personalized treatment. CLINICAL RELEVANCE STATEMENT: A CT-based radiomics model accurately predicts lymph node metastasis in perihilar cholangiocarcinoma patients. This noninvasive preoperative tool can aid in patient risk stratification and personalized treatment, potentially improving patient outcomes. KEY POINTS: • The radiomics model based on contrast-enhanced CT is a useful tool for preoperative prediction of lymph node metastasis in perihilar cholangiocarcinoma. • Radiomics features extracted from lymph nodes show great potential for predicting lymph node metastasis. • The study is the first to identify a lymph node phenotype with a high probability of metastasis based on radiomics.


Subject(s)
Bile Duct Neoplasms , Klatskin Tumor , Humans , Male , Middle Aged , Lymphatic Metastasis/pathology , Klatskin Tumor/diagnostic imaging , Klatskin Tumor/surgery , Radiomics , Retrospective Studies , Tomography, X-Ray Computed/methods , Lymph Nodes/pathology , Bile Duct Neoplasms/diagnostic imaging , Bile Duct Neoplasms/surgery , Bile Duct Neoplasms/pathology
11.
Eur Radiol ; 34(1): 28-38, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37532899

ABSTRACT

OBJECTIVES: To assess image quality and liver metastasis detection of reduced-dose dual-energy CT (DECT) with deep learning image reconstruction (DLIR) compared to standard-dose single-energy CT (SECT) with DLIR or iterative reconstruction (IR). METHODS: In this prospective study, two groups of 40 participants each underwent abdominal contrast-enhanced scans with full-dose SECT (120-kVp images, DLIR and IR algorithms) or reduced-dose DECT (40- to 60-keV virtual monochromatic images [VMIs], DLIR algorithm), with 122 and 106 metastases, respectively. Groups were matched by age, sex ratio, body mass index, and cross-sectional area. Noise power spectrum of liver images and task-based transfer function of metastases were calculated to assess the noise texture and low-contrast resolution. The image noise, signal-to-noise ratios (SNR) of liver and portal vein, liver-to-lesion contrast-to-noise ratio (LLR), lesion conspicuity, lesion detection rate, and the subjective image quality metrics were compared between groups on 1.25-mm reconstructed images. RESULTS: Compared to 120-kVp images with IR, 40- and 50-keV VMIs with DLIR showed similar noise texture and LLR, similar or higher image noise and low-contrast resolution, improved SNR and lesion conspicuity, and similar or better perceptual image quality. When compared to 120-kVp images with DLIR, 50-keV VMIs with DLIR had similar low-contrast resolution, SNR, LLR, lesion conspicuity, and perceptual image quality but lower frequency noise texture and higher image noise. For the detection of hepatic metastases, reduced-dose DECT by 34% maintained observer lesion detection rates. CONCLUSION: DECT assisted with DLIR enables a 34% dose reduction for detecting hepatic metastases while maintaining comparable perceptual image quality to full-dose SECT. CLINICAL RELEVANCE STATEMENT: Reduced-dose dual-energy CT with deep learning image reconstruction is as accurate as standard-dose single-energy CT for the detection of liver metastases and saves more than 30% of the radiation dose. KEY POINTS: • The 40- and 50-keV virtual monochromatic images (VMIs) with deep learning image reconstruction (DLIR) improved lesion conspicuity compared with 120-kVp images with iterative reconstruction while providing similar or better perceptual image quality. • The 50-keV VMIs with DLIR provided comparable perceptual image quality and lesion conspicuity to 120-kVp images with DLIR. • The reduction of radiation by 34% by DLIR in low-keV VMIs is clinically sufficient for detecting low-contrast hepatic metastases.


Subject(s)
Deep Learning , Liver Neoplasms , Humans , Prospective Studies , Liver Neoplasms/diagnostic imaging , Tomography, X-Ray Computed/methods , Algorithms , Radiographic Image Interpretation, Computer-Assisted/methods , Radiation Dosage , Image Processing, Computer-Assisted/methods
12.
Eur Radiol ; 34(3): 1614-1623, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37650972

ABSTRACT

OBJECTIVE: This study aimed to evaluate the image quality and lesion conspicuity of the deep learning image reconstruction (DLIR) algorithm compared with standard image reconstruction algorithms on abdominal enhanced computed tomography (CT) scanning with a wide range of body mass indexes (BMIs). METHODS: A total of 112 participants who underwent contrast-enhanced abdominal CT scans were divided into three groups according to BMIs: the 80-kVp group (BMI ≤ 23.9 kg/m2), 100-kVp group (BMI 24-28.9 kg/m2), and 120-kVp group (BMI ≥ 29 kg/m2). All images were reconstructed using filtered back projection (FBP), adaptive statistical iterative reconstruction-V of 50% level (IR), and DLIR at low, medium, and high levels (DL, DM, and DH, respectively). Subjective noise, artifact, overall image quality, and low- and high-contrast hepatic lesion conspicuity were all graded on a 5-point scale. The CT attenuation value (in HU), image noise, and contrast-to-noise ratio (CNR) were quantified and compared. RESULTS: DM and DH improved the qualitative and quantitative parameters compared with FBP and IR for all three BMI groups. DH had the lowest image noise and highest CNR value, while DM had the highest subjective overall image quality and low- and high-contrast lesion conspicuity scores for the three BMI groups. Based on the FBP, the improvement in image quality and lesion conspicuity of DM and DH images was greater in the 80-kVp group than in the 100-kVp and 120-kVp groups. CONCLUSION: For all BMIs, DLIR improves both image quality and hepatic lesion conspicuity, of which DM would be the best choice to balance both. CLINICAL RELEVANCE STATEMENT: The study suggests that utilizing DLIR, particularly at the medium level, can significantly enhance image quality and lesion visibility on abdominal CT scans across a wide range of BMIs. KEY POINTS: • DLIR improved the image quality and lesion conspicuity across a wide range of BMIs. • DLIR at medium level had the highest subjective parameters and lesion conspicuity scores among all reconstruction levels. • On the basis of the FBP, the 80-kVp group had improved image quality and lesion conspicuity more than the 100-kVp and 120-kVp groups.


Subject(s)
Deep Learning , Humans , Body Mass Index , Tomography, X-Ray Computed/methods , Algorithms , Phantoms, Imaging , Radiographic Image Interpretation, Computer-Assisted/methods , Radiation Dosage , Image Processing, Computer-Assisted
13.
Sci Total Environ ; 912: 169311, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38103608

ABSTRACT

Methane (CH4) is both generated and consumed in paddy soils, where anaerobic oxidation of methane (AOM) serves as a crucial process for mitigating CH4 emissions. Although the participation of humic acids (HA) and nitrate in AOM has been recognized, their relative roles and significance in paddy soils remain insufficiently investigated. In this study, we explored the potential activity of AOM driven by HA and nitrate, as well as the composition of archaeal communities in paddy soils across different rice growth periods and fertilization treatments. AOM activity ranged from 0.81 to 1.33 and 1.26 to 2.38 nmol of 13CO2 g-1 (dry soil) day-1 with HA and nitrate, respectively. No significant differences (p < 0.05) were observed between the AOM activity driven by HA and nitrate across the three fertilization treatments. According to AOM activity, the annual consumption of CH4 was estimated at approximately 0.49 ± 0.06 and 0.83 ± 0.19 Tg for AOM processes driven by HA and nitrate in Chinese paddy soils. Nitrate-driven AOM activity exhibited a positive (p < 0.05) correlation with the abundance of the ANME-2d mcrA gene but a negative (p < 0.05) correlation with the content of dissolved organic carbon. Intriguingly, HA-driven AOM activity was only correlated positively with the nitrate-driven AOM activity. Soil water content, soil organic carbon, nitrate and nitrite contents were significantly correlated with the relative abundance of methanogenic and methanotrophic archaea. These results identified the potential importance of HA and nitrate in driving AOM processes within paddy soils, providing a comprehensive understanding of the complex microbial processes regulating greenhouse gas emissions from paddy soils.


Subject(s)
Humic Substances , Nitrates , Soil , Methane , Anaerobiosis , Carbon , Archaea/genetics , Oxidation-Reduction
14.
Nat Food ; 4(10): 854-865, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37845546

ABSTRACT

Air pollution and climate change are tightly interconnected and jointly affect field crop production and agroecosystem health. Although our understanding of the individual and combined impacts of air pollution and climate change factors is improving, the adaptation of crop production to concurrent air pollution and climate change remains challenging to resolve. Here we evaluate recent advances in the adaptation of crop production to climate change and air pollution at the plant, field and ecosystem scales. The main approaches at the plant level include the integration of genetic variation, molecular breeding and phenotyping. Field-level techniques include optimizing cultivation practices, promoting mixed cropping and diversification, and applying technologies such as antiozonants, nanotechnology and robot-assisted farming. Plant- and field-level techniques would be further facilitated by enhancing soil resilience, incorporating precision agriculture and modifying the hydrology and microclimate of agricultural landscapes at the ecosystem level. Strategies and opportunities for crop production under climate change and air pollution are discussed.


Subject(s)
Air Pollution , Ecosystem , Climate Change , Crops, Agricultural/genetics , Crop Production
15.
Cureus ; 15(9): e45398, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37854739

ABSTRACT

Objective This study evaluated the association between N-terminal prohormone of brain natriuretic peptide (NT-proBNP) concentration and one-year mortality in geriatric patients with intertrochanteric and femoral neck fractures receiving the operative treatment. Methods Consecutive age ≥65 years patients with hip fractures were screened between January 2015 and September 2019. Demographic and clinical characteristics of the patients were collected. The multivariate logistic regression models were used to identify the association between preoperative NT-proBNP concentrations and mortality. All analyses were performed using EmpowerStats and the R software. Result One thousand two hundred nineteen patients were included in the study. The average age was 79.73±6.65 years (range 66-99 years). The mean NT-proBNP concentration was 616.09±1086.85 ng/L (median 313.40 ng/L, range 16.09-20123.00 ng/L). The follow-up was 35.39±15.09 months (median 35.78 months, range 0.10-80.14 months). One hundred and eleven (9.1%) patients died within one year. After adjusting for confounding factors, multivariate logistic regression models showed a curved association between preoperative NT-proBNP concentration and one-year mortality. When the NT-proBNP concentration was below 1099 ng/L, the mortality increased by 10% (OR=1.10, 95%CI: 1.03-1.17, P=0.0025) when NT-proBNP increased by 100 ng/L. When the NT-proBNP concentration was above 1099 ng/L, the mortality did not increase anymore when NT-proBNP increased (OR=1.00, 95%CI: 0.99-1.02, P=0. 7786). Thus, NT-proBNP was a valuable indicator to predict high one-year mortality in practice. Conclusion The NT-proBNP concentrations were nonlinearly associated with mortality in elderly hip fractures with a saturation effect, and NT-proBNP was a risk indicator of all-cause mortality. A well-designed controlled trial to show the role of mortality by decreasing the concentration of NT-proBNP is needed in the future.

16.
J Am Chem Soc ; 145(38): 20739-20744, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37703184

ABSTRACT

Carbon nitride materials can be hosts for transition metal sites, but Mössbauer studies on iron complexes in carbon nitrides have always shown a mixture of environments and oxidation states. Here we describe the synthesis and characterization of a crystalline carbon nitride with stoichiometric iron sites that all have the same environment. The material (formula C6N9H2Fe0.4Li1.2Cl, abbreviated PTI/FeCl2) is derived from reacting poly(triazine imide)·LiCl (PTI/LiCl) with a low-melting FeCl2/KCl flux, followed by anaerobic rinsing with methanol. X-ray diffraction, X-ray absorption and Mössbauer spectroscopies, and SQUID magnetometry indicate that there are tetrahedral high-spin iron(II) sites throughout the material, all having the same geometry. The material is active for electrocatalytic nitrate reduction to ammonia, with a production rate of ca. 0.1 mmol cm-2 h-1 and Faradaic efficiency of ca. 80% at -0.80 V vs RHE.

17.
Front Oncol ; 13: 1199426, 2023.
Article in English | MEDLINE | ID: mdl-37538109

ABSTRACT

Purpose: This study aimed to investigate the value of quantified extracellular volume fraction (fECV) derived from dual-energy CT (DECT) for predicting the survival outcomes of patients with hepatocellular carcinoma (HCC) after transarterial chemoembolization (TACE). Materials and methods: A total of 63 patients with HCC who underwent DECT before treatment were retrospectively included. Virtual monochromatic images (VMI) (70 keV) and iodine density images (IDI) during the equilibrium phase (EP) were generated. The tumor VMI-fECV and IDI-fECV were measured and calculated on the whole tumor (Whole) and maximum enhancement of the tumor (Maximum), respectively. Univariate and multivariate Cox models were used to evaluate the effects of clinical and imaging predictors on overall survival (OS) and progression-free survival (PFS). Results: The correlation between tumor VMI-fECV and IDI-fECV was strong (both p< 0.001). The Bland-Altman plot between VMI-fECV and IDI-fECV showed a bias of 5.16% for the Whole and 6.89% for the Maximum modalities, respectively. Increasing tumor VMI-fECV and IDI-fECV were positively related to the effects on OS and PFS (both p< 0.05). The tumor IDI-fECV-Maximum was the only congruent independent predictor in patients with HCC after TACE in the multivariate analysis on OS (p = 0.000) and PFS (p = 0.028). Patients with higher IDI-fECV-Maximum values had better survival rates above the optimal cutoff values, which were 35.42% for OS and 29.37% for PFS. Conclusion: The quantified fECV determined by the equilibrium-phase contrast-enhanced DECT can potentially predict the survival outcomes of patients with HCC following TACE treatment.

18.
Zhongguo Zhong Yao Za Zhi ; 48(8): 2092-2102, 2023 Apr.
Article in Chinese | MEDLINE | ID: mdl-37282898

ABSTRACT

With scarce resources, natural Bovis Calculus is expensive and hard to meet clinical demand. At the moment, four kinds of Bovis Calculus are available on the market: the natural product, in vitro cultured product, synthesized product, and the product formed in cow after manual intervention. In this study, papers on the four kinds of Bovis Calculus products and relevant Chinese patent medicines were searched from Web of Science, PubMed, and China National Knowledge Infrastructure(CNKI). CiteSpace, citexs AI, and CNKI were employed for bibliometric analysis and knowledge map analysis. On this basis, the status, trend, and focuses of research on Bovis Calculus and relevant Chinese patent medicines were summarized. The results suggested overall slow development in the research on Bovis Calculus and relevant Chinese patent medicines with three typical growth stages. It is consistent with the development of Bovis Calculus substitutes and the national policy for the development of traditional Chinese medicine. At the moment, the research on Bovis Calculus and relevant Chinese patent medicines has been on the rise. In recent years, there has been an explosion of research on them, particularly the quality control of Bovis Calculus and the Chinese patent medicines, the pharmacological efficacy of Chinese patent medicines, such as Angong Niuhuang Pills, and the comparison of the quality of various Bovis Calculus products. However, there is a paucity of research on the pharmacological efficacy and the mechanism of Bovis Calculus. This medicinal and the relevant Chinese patent medicines have been studied from diverse perspectives and China becomes outstanding in this research field. However, it is still necessary to reveal the chemical composition, pharmacological efficacy, and mechanism through multi-dimensional deep research.


Subject(s)
Biological Products , Drugs, Chinese Herbal , Animals , Cattle , Female , Bibliometrics , Drugs, Chinese Herbal/therapeutic use , Medicine, Chinese Traditional , Nonprescription Drugs
19.
Food Res Int ; 171: 113073, 2023 09.
Article in English | MEDLINE | ID: mdl-37330832

ABSTRACT

Brown rice exhibits higher nutritional value and attracts more and more attentions; however, the change in phospholipid molecular species in brown rice during aging is poorly understood. In this study, shotgun lipidomics was employed to investigate the changes in phospholipid molecular species in four brown rice varieties (two japonica rice and two indica rice) during accelerated aging. A total of 64 phospholipid molecular species were identified, and most of them were rich in polyunsaturated fatty acids. For japonica rice, phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylglycerol (PG) gradually decreased during accelerated aging. However, the content of PC, PE, and PG in indica rice showed no difference during accelerated aging. Significantly different phospholipid molecular species from four brown rice were screened during accelerated aging. Based on these significantly different phospholipids, the metabolic pathways including glycerophospholipid metabolism and linoleic acid metabolism during accelerated aging were depicted. The findings from this study could be helpful in explaining the impact of accelerated aging on phospholipids of brown rice, and offer an understanding on relationships between phospholipids degradation and brown rice deterioration.


Subject(s)
Oryza , Phospholipids , Phospholipids/metabolism , Oryza/metabolism , Lipidomics , Fatty Acids, Unsaturated , Phosphatidylcholines
20.
Angew Chem Int Ed Engl ; 62(30): e202305251, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37235523

ABSTRACT

Photothermal CO2 reduction is one of the most promising routes to efficiently utilize solar energy for fuel production at high rates. However, this reaction is currently limited by underdeveloped catalysts with low photothermal conversion efficiency, insufficient exposure of active sites, low active material loading, and high material cost. Herein, we report a potassium-modified carbon-supported cobalt (K+ -Co-C) catalyst mimicking the structure of a lotus pod that addresses these challenges. As a result of the designed lotus-pod structure which features an efficient photothermal C substrate with hierarchical pores, an intimate Co/C interface with covalent bonding, and exposed Co catalytic sites with optimized CO binding strength, the K+ -Co-C catalyst shows a record-high photothermal CO2 hydrogenation rate of 758 mmol gcat -1 h-1 (2871 mmol gCo -1 h-1 ) with a 99.8 % selectivity for CO, three orders of magnitude higher than typical photochemical CO2 reduction reactions. We further demonstrate with this catalyst effective CO2 conversion under natural sunlight one hour before sunset during the winter season, putting forward an important step towards practical solar fuel production.

SELECTION OF CITATIONS
SEARCH DETAIL
...